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ON BROCKETT’S CONDITION FOR SMOOTH STABILIZABILITY AND ITS
NECESSITY IN A CONTEXT OF NONSMOOTH FEEDBACK*

E. P. RYANT

Abstract. The necessity of Brockett’s condition for stabilizability of nonlinear systems by smooth feedback is
shown, by an argument based on properties of a degree for set-valued maps, to persist when the class of controls is
enlarged to include discontinuous feedback.
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1. Introduction. Consider the control system
e)) $(t) = f(x(t),u(t)), :L‘(O) =2z’ € ]RNa f(O» 0) =0,

with f : RY x BRM — RY continuous. In the case of linear f, it is well known that the
system is (globally) asymptotically null controllable if and only if it is stabilizable by (linear)
feedback. Brockett [2] has shown that an analogous equivalence of (local) asymptotic null
controllability and (nonlinear) feedback stabilizability does not hold for smooth (by which
we mean C') nonlinear systems. In particular, he proved a result that implies the following
necessary condition for (local) smooth stabilizability—henceforth referred to as Brockett’s
condition.

BROCKETT’S CONDITION. Let f € C'. If (1) is C' stabilizable (in the sense that there
exists a time-invariant C" feedback that renders {0} both Lyapunov stable and an attractor),
then the image of f contains an open neighbourhood of 0.

If f is linear, that s, if f(x,u) = Ax+ Bu, then the necessary condition for stabilizability
is simply the requirement that [A : B] be of full rank, and this is implied by asymptotic null
controllability of the linear system. However, for general f € C', (local asymptotic) null
controllability of (1) does not imply that f has the above property, a (now classic) illustration
is the case

f . ]R?, X ]RZ - ]R37 (.’l?,u) = ($1,(L’2,.’1)3,U|,U2) — (Ul,UQ,$2U1 - xlu2)

that defines a completely controllable bilinear system (1) for which (0,0, €) ¢ im(f) for all
€ # 0, and so this system is not C'! stabilizable.

Such examples are counterintuitive. It is tempting to conjecture that the “gap” between
controllability and feedback stabilizability is due to the restriction to the class of smooth
(C") time-invariant feedbacks. As in Sontag [11], the investigation readily extends to time-
invariant feedbacks that are only locally Lipschitz (in fact, even this requirement is too strong,
its consequence, uniqueness of the solution of the feedback-controlled initial-value problem,
suffices as in [13]) and the gap is found to persist. Furthermore, Zabczyk [13] has shown that
the necessity of Brockett’s condition on f also persists when “stabilizability by time-invariant
continuous feedback is interpreted in either of the following senses: (i) that of rendering {0} a
global attractor (which, of course, does not imply Lyapunov stability of {0}), or (ii) in the case
of n < 2, that of rendering {0} Lyapunov stable. Two possible avenues for further investigation
suggest themselves naturally: (a) time-varying feedback and (b) discontinuous feedback. The
former avenue has been followed by Coron [5]. In the case of f(z,u) = Zlﬂil u; fi(x) with
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fi € C°°(R™), he has established that the accessibility rank condition, dim Lie(®)(z) = N
for all z € RV\{0} (where Lie(®) denotes the Lie algebra of vector fields generated by
® = (fi1,..., fm)), is sufficient for the existence of T-periodic C*° feedbacks that globally
asymptotically stabilize (1). In particular, this result applies to the example cited above. In
the present paper, we take the second avenue and restrict to time-invariant feedbacks.
Discontinuous feedbacks arise naturally in many areas of control theory (see [7]) and
practice (indeed, bang-bang or relay-type control actions permeate much of the early devel-
opment of the field). It is not difficult to construct examples that fail to be locally asymp-
totically stabilizable by continuous feedback, but that are so stabilizable by discontinuous
feedback. One such example is system (1) with f : R x R — R, (z,u) — 2z + |z|u.
Therefore, the additional dynamic behaviours engendered by discontinuous feedbacks (that
subsume the continuous case) raise the question of whether or not their adoption might close
the controllability-stabilizability gap. Here this question is answered negatively. We show
that with f only required to be continuous and to have property (2), below, and with the
class of time-invariant feedbacks taken to be that of upper semicontinuous set-valued maps
with nonempty convex and compact values (a class into which a wide variety of discontinuous
strategies may be embedded and within which continuous feedbacks may be identified with the
subclass of singleton-valued maps), the necessity of Brockett’s condition on f again persists.

2. Class of systems and statement of main result. We study systems of form (1) and
assume only that continuous f has the property (see also Remark 1, below)

2) K c RM convex = flz,K) C RY convex.

Evidently, (2) holds for systems that are linear in the control.

As admissible feedback controls for (1), we take the class KC of upper semicontinuous
maps x — k(z) C RM on RY, with nonempty convex and compact values and with 0 € k(0).
For example, in the case M = 1, discontinuous feedbacks of the form = — ~(x)sgn(&(z)),
with -y and € continuous and such that the product v(0)£(0) is zero, fall within our framework
if the signum function is interpreted as the upper semicontinuous set-valued map

{+1}, ©v>0,
v sgn(v) =< [—1,1], v=0,
{-1}, w<o.

For every feedback k € K, the map x — f(z,k(z)) is also upper semicontinuous with
nonempty convex and compact values. Therefore, for each z° € RY the initial-value problem

3) i(t) € f(z(t), k(z(t)),  x(0)=2a°

has at least one solution (see [1, Thm. 2.1.3]), that is, a function z : [0,w) — RN, with z(0) =
2, that is absolutely continuous on compact subintervals and that satisfies the differential
inclusion in (3) almost everywhere. Moreover, every solution = can be maximally extended.
Furthermore, if 2 is bounded on its maximal interval of existence [0,w), then w = oo (see,
for example, [10]). We say that {z} is an equilibrium of (3) if 0 € f(z, k(z)). Note that, for
each k € K, {0} is an equilibrium of (3).

In contrast with the smooth case, the property of uniqueness of the solution for the initial-
value problem (3) clearly does not hold in our general nonsmooth framework. Implicit in
the following definition is a notion of local asymptotic stability wherein we impose “equi-
attractivity” of the equilibrium {0}. In essence, attraction to this equilibrium is required to be
uniform with respect to nonunique solutions.
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DEFINITION 1. A feedback control k € K is said to be equi-asymptotically stabilizing
for (1) if it renders the equilibrium {0} of (3) equi-asymptotically stable in the sense that the
following two properties hold.

(i) Lyapunov stability of the equilibrium {0}: for each p > 0, there exists § > 0 such
that

2 <6 = lla(®)|| < p forallt>0

for every maximal solution x of the initial-value problem (3).

(ii) Equi-attractivity of the equilibrium {0}: there exists § > 0 and, to each T > 0, there
corresponds T' > 0 such that

2% <6 = ||z(t)|| < T forallt>T

for every maximal solution x of the initial-value problem (3).
Although the above definition is intrinsic to the problem, the following weaker (but
somewhat artificial) property of the feedback is all that is required in the analysis.
DEFINITION 2. A feedback control k € K is said to be equi-constricting for (1) if (3) has
the following property. There exist scalars p > 6 > 7 > 0 and T > 0 such that

|2°) <6 = |lz(t)| < p forallt >0 and |z(t)| <71 forallte [T,2T)

for every maximal solution x of (3).

It is clear that, if £ € K is an equi-asymptotically stabilizing feedback for (1), then k is
an equi-constricting feedback for (1). While the former concept is manifestly more natural
from an applications viewpoint, the latter is considerably weaker. In particular, Definition 2
simply invokes the existence of some quadruple (p, 6, 7, T'), assuring the requisite properties.
In essence, solutions of (3) are required only to be bounded uniformly with respect to initial
data in some closed ball (of radius §) and, on an interval [T, 27], to take their values in some
smaller ball (of radius 7 < 9).

The main result we will prove is the following.

THEOREM 1. Let f be continuous with property (2). If there exists an equi-constricting
feedback control k € K for (1), then the image of f contains an open neighbourhood of 0.

A simple modification to the proof of Theorem 1 will yield the following generalization
of Brockett’s condition.

COROLLARY 1. Let f be continuous with property (2). Ifthere exists an equi-asymptotically
stabilizing feedback control k € K for (1), then, for each open neighbourhood N of 0 €
RN, f (N x RrRM ) contains an open neighbourhood of 0.

Remark 1. If K is replaced by the class of C'! feedbacks and attention is restricted to
functions f € C!, then condition (2), which plays its role only in assuring that the right
hand side of (3) takes convex values, may be removed; furthermore, the qualifier “equi” in
Definition 2 is redundant. In this manner, Brockett’s original result for smooth systems may
be recovered as a special case of the above. It is in this sense that we regard Corollary 1 as a
generalization of Brockett’s condition.

The proof of Theorem 1, which is given in §4, is degree-theoretic in nature and similar
in concept to the approaches of [8, §52], [11, §4.8], and [13, §2]. However, in the present
nonsmooth setting, we first require some appropriate notion of degree for set-valued maps.
This has been investigated by Cellina and Lasota [3] (see also [9], [12], [6]), and a distillation
of results pertinent to our application is given in the next section.
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3. Degree for set-valued maps. Here the objective is to reiterate, within the framework
of [3], [12] but tailored to our immediate purpose, some results pertaining to degree for set-
valued maps. The approach to defining degree for a (suitably regular) set-valued map F' is via
the Brouwer degree for single-valued approximate selections for F'. With this in mind, some
basic definitions and properties of upper semicontinuous maps and approximate selections
(for details, see [1], [6]) are initially assembled.

3.1. Upper semicontinuous maps and approximate selections. For notational conve-
nience, write X := R™. The ball of radius r > 0, centred at ¢ € X, will be denoted B.(c);
when ¢ = 0, we simply write B,.. For nonempty subsets U, V' of a Banach space Y, define

d(y,V) = 12‘f/ ly —v|| forallyeY, and d*(U,V):= sup d(u,V).
v uelU

Let ¢ — F(z) C X, with domain dom(F) = D C X, have nonempty values. F is upper
semicontinuous if it is upper semicontinuous at each x € D: for each € > 0, there exists
6 > 0 such that

F(w) C F(z)+ B. forallw € DN Bs(x).

If C C D is compact and F is upper semicontinuous with compact values, then F(C') is
compact.

THEOREM 2 (Approximate selection theorem). Let F' be an upper semicontinuous map
with domain D C X and taking nonempty convex compact values in X. For each e > 0,
there exists a locally Lipschitz single-valued function f. : D — co(F (D)) such that

d*(graph(fc), graph(F)) < e.
(Any such f. will be referred to as an approximate selection for F'.)

3.2. Construction and properties of degree. Initially, we recall Brouwer degree in the
context of single-valueii maps. As before, let X := RN, Henceforth, 2 C X is a bounded
open set, with closure €2 and boundary 092. Let

M = {(f,Q,p)|X D Qopen bounded, f : ? — X continuous,p € X\ f(6Q)},

then the Brouwer degree degg is the unique map M — Z with the following properties:

B-1. degg(I,Q),p) = 1forallp €

B-2. If degg(f, 2, p) # 0, then p = f(x) for some = € Q;

B-3. (Homotopic invariance). If b : [0,1] x Q — X and ¢ : [0, 1] — X are continuous
withg(t) ¢ h(t,-)(0Q) forallt € [0, 1], thendegg(h(t, -), 2, ¢(t)) isindependent of ¢t € [0, 1];

B-4. (Odd mappings). If Q contains, and is symmetric about, the origin in X and
f(—=z) = —f(z) for all z € 01, then degg( f, 2, 0) is odd (and so is nonzero).

The class of set-valued maps F', to which the ensuing construction [3], [12] of degree
applies, are precisely those satisfying the hypotheses of Theorem 2: upper semicontinuous
maps z — F(z) C X from dom(F) C X to the nonempty convex compact subsets of X.

For every open bounded €2, with closure Q C dom(F) C X, and every p € X\F(09),
we define an integer deg(F, 2, p), the degree of F' (with respect to the set §2 and point p).

3.2.1. Construction. Letp € X\ F(0Q)and let FP) denote the map defined on compact
Qbyz — F(z) — {p} = {v—p|v € F(x)}. By Theorem 2, for each ¢ > 0 there exists
an approximate selection f. for F(), We first show that, for all ¢ > 0 sufficiently small,
every such approximate selection f. has no zeros in 2. Suppose otherwise. Then there
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exist sequences (¢,,), (fe,), and (z,) C O, withe, | 0,0 = f., (z,) € co(FP)(Q)), and
0 € F®P)(y,) + B, for some y, € Q with ||z, — yn|| < €,. By compactness of Q, (y,)
has a convergent subsequence (that we do not relabel), with limit z say, and so z,, — 2z € OS2
as n — oo. By upper semicontinuity of FP), for each ¢ > 0, 0 € F(®)(2) + B, . for all
n sufficiently large. Therefore, 0 € F(®)(z) = F(®)(z) and so p € F(z) with z € 99, a
contradiction. It follows that for all € > 0 sufficiently small, degg ( fe, 2, 0) is well defined for
every approximate selection f, for F(P),

Let fc and g, be any two such approximate selections. Define the continuous function
he (0,1 x Q= X, (t,2) = tfe(z) + (1 — )ge(2).

For all € > 0 sufficiently small, h(,-) has no zeros in 9N for every t € [0, 1]. This can be
argued (in a similar manner to above) by contradiction. Suppose otherwise; then there exist
t € [0, 1], a sequence (€,) with €, | 0, and a sequence (x,,) C O such that

0=he,(t,x,) =tfe, (xn) + (1 = t)ge, () € tFP () + (1 = ) FP)(2,) + B,

for some Y, 2, € Q with |2, — ynll, |Zn — 2n|| < €n. By compactness of €2, without loss of
generality we may assume that z,, — zandsoy, — zandz, — z € 0f2asn — oo. By upper
semicontinuity of F'(P) and convexity of its values, for each ¢ > 0, 0 € F(?)(2) + B, .. for
all n sufficiently large and so 0 € F(P)(2), contradicting the fact that p ¢ F'(9Q). Therefore,
foralle > 0, 0 ¢ h(t,-)(09) for all ¢ € [0, 1]. Thus, by property B-3, degg (h.(t, -),,0) is
independent of ¢ € [0, 1], and so we may conclude that, for all € > O sufficiently small,

degg (fe,2,0) = degg(h(1,-),Q,0) = degg (h(0,-),Q,0) = degy(ge, 2,0).

Simply stated, for all ¢ > 0 sufficiently small, degg( fe, €2, 0) is well defined for every approx-
imate selection f, and is independent of the particular selection chosen.

In summary, the above construction ensures that the following concept of degree for the
set-valued map F' is well defined:

deg(Fvﬂap) = ll?& degB(.f€7 950)

3.2.2. Properties.

THEOREM 3. Let x — F(x) C X be upper semicontinuous on compact Q C X with
nonempty, convex, and compact values.

() Ifq : [0,1] —» X\F(0Q) is continuous, then deg(F,Q, q(t)) is independent of t €
[0, 1].

(i) Ifp € X\F(09Q) is such that deg(F, 2, p) # 0, then p € F(z) for some x € .

Proof. By the above construction, all degrees in the assertions of the theorem are well
defined.

Assertion (i) is an immediate consequence of the construction together with B-3.

(ii) Because degg(F,Q2,p) # O, there exists a sequence (e,), with €, | 0, and an
associated sequence (f, ) of approximate selections for F(*) such that degg(f., ,€2,0) # 0
for all n sufficiently large. By B-2, for each n sufficiently large, there exists x,, € €2 such
that 0 = f. (z,). By compactness of 2, without loss of generality we may assume that
zn, — ¢ € Q. Moreover, because the functions fe,, are approximate selections, for each n
there exists y,, € Q, with ||z, — y,|| < €n, such that

0=f (zn) € F(p)(yn) + Be,,.

Arguing as before (using semicontinuity of F' and compactness of its values), it follows that
0 € F®(z) and so p € F(x). This proves assertion (i) of the theorem. O
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4. Proof of the main result. We now turn attention to the proof of Theorem 1. Again
write X := RN, Assume k € K is an equi-constricting feedback for (1). Then there exist
p>6>71>0andT > 0 such that

2% <6 = ||z(t)|| < p forallt >0 and |lz(t)|| <7 forallt e [T,2T]

for every maximal solution z(-) of (3).
Define the set-valued map F' on X as follows:

[ fe k), el < o,
@ e {f(pna:n-*x,k(pnxu—'x», lzll > p.

It is evident that F' is upper semicontinuous with nonempty convex and compact values, and
so F(B,) = F(X) is compact. By the construction in §3.2.1, for every open bounded set
Q C X and every p € X\F(99), deg(F, 2, p) is well defined.

Consider the initial-value problem

(5) i(t) € F(z(t)), z(0) = 2.

By compactness of F'(X) we may deduce that, for each 2 € X, every solution of (5) has
maximal interval of existence Rt := [0, 00). Observe that, for each z° with ||z°|| < &, the
set of maximal solutions of (5) is precisely the set of maximal solutions of (3). o

Write 0 := Bg, with closure Q°. By the equi-constricting property, the annulus 0\ B,
cannot contain an equilibrium of (5) (or, equivalently, a point z such that0 € F'(x)). Therefore,
0 ¢ F(00°) and deg(F, Q°,0) is well defined. Let (f,,)nen be a sequence of locally Lipschitz
approximate selections for F' with

d*(graph(f,), graph(F)) — 0 asn — oo

and such that deg(F, 2°,0) = degg(f,, 2, 0) for all n. o
Write I := [0,2T] and Y := C(I; X) with the uniform norm. On 20 we define the map

F:2¥ s {z € Y|i(t) € F(z(t))ae., z(0) = 2°}.

For each n, define the map ¢,, : Q0 — Y as follows: ¢, («°) is the unique element z of Y
such that

@(t) = fu(x(t)) forallt€ I, and 2z(0) =z’
By the classical theory of ordinary differential equations, the map (¢, 2°) — (¢, (2°))(¢) is
continuous.
We claim that, for every € > 0,
d*(graph(¢y,, ), graph(F)) < € for some n.
Suppose otherwise. Then there exist € > 0 and a sequence (z%) C €0 such that

d((22, ¢n(22)), graph(F)) > ¢ for alln.

For notational convenience, we write 2., = ¢, (z7,). Arguing as in the first proof of Theorem
2.1.3 of [1] (see also [4, Thm 3.1.7]) and extracting a subsequence if necessary, we may assume
that (z,,) C Y converges uniformly to an absolutely continuous function z : I — X, z(0) =
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20 € QO, satisfying i(t) € F(z(t)) almost everywhere, whence the following contradiction:
(2%, ,) — (2°, ) € graph(F) as n — oo.
Let 0 < € < § — 7 and let m be such that d*(graph(¢,, ), graph(F)) < e. We assert that

(6) forallz® € Q0 (¢ (z°))(t) € Q° forallt € [T,2T].

This may be shown as follows. Let 20 € Q0 be arbitrary. There exists ¢ € 00, with
|z° — 40| < €, and y € F(y°) such that ||(¢m (2°))(t) — y(t)|| < e forall t € I. Because the
set {y(t)|y € F(Q0)} lies in the ball B, for all t € [T, 2T, the assertion must hold.

Define a function h : [0,1] x Q0 — X by

Vo [ @), s=0,
o) = { () 6T) - 29, 0<s <1

That h is continuous is readily verified. Furthermore, (s, %) # Oforall (s, 2°) € [0, 1]x9Q°

by the following argument. Suppose h(0,2°) = f,,(2°) = 0 for some 2° € 9Q°. Then

(pm(x))(t) = 2° € 9Q° for all t € I, which contradicts (6). Now suppose h(s,z?) = 0 for

some (s,2°) € (0,1] x 900, Then (¢,,(2°))(nsT) = 2° € ON° for all n € N with ns < 2.
In particular, there exists n € N such that

1<ns<2 and (¢ (2°))(nsT) = 2° € 9Q°.

This contradicts (6).
We have now established h as a homotopic connection of the functions f,,, and

Gm 2 20 = (G (2))T) — 2°.

It is evident that ho : [0,1] x Q0 (s,2°) — (1 — s)gm(2°) — sz° defines a homotopic
connection of g,,, and the odd map x° — —2°. By properties B-3 and B-4, we may conclude
that

deg(F,2°,0) = degg(fm, 2°,0) = degg(gm, 2°,0) # 0.

Since 0 ¢ F(0020), d(0, F(z)) > 0 for all z € 9Q°. Next, we show that z — d(0, F(z)) is
lower semicontinuous on 9Q°. Let € 99Q° be arbitrary and let (z,,) C 992° be a convergent
sequence with limit z. Let subsequence (., ) be such that

klim d(0, F(zy,)) = liminfd(0, F(x,)).

For each k, let yy, be a minimizer of || - || over compact F'(z,,, ), that s, ||yx|| = d(0, F(zy,)).
By upper semicontinuity of F', for each ¢ > 0 we have yi € F(x,,) C F(z) + B, forall k
sufficiently large. By compactness of F'(z), it follows that (yy ) has a convergent subsequence
(that we do not relabel) with limit y € F(z), whence

40, F(x)) = min o] <yl = Jim [lys]| = liminf d(0, F(a)).

Thus, = — d(0, F(z)) is positive-valued and lower semicontinuous on compact Q° and so
attains a positive minimum value thereon. We may now conclude the existence of a scalar
p > Osuch thatp ¢ F(09Q°) forallp € B,,. By Theorem 3(i) we deduce that, for every such
p’

deg(F, 2, p) = deg(F,Q°,0) #0.
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Therefore, by Theorem 3(ii), for each p € B,, there exists z € Q2° = B suchthatp € F(z) =
f(x,k(x)). It immediately follows that each p € B, is the image, under f, of some point
(z,u) € Bs x RM. This completes the proof of Theorem 1.

It remains only to prove Corollary 1. Let A/ be any open neighbourhood of 0 € X and
let p > 0 be such that B, C N. Let k € K be equi-asymptotically stabilizing. Then there
exist scalars 7' > 0 and 4, 7, with 0 < 7 < § < p, such that the equi-constricting property
of Definition 2 holds. Now, arguing exactly as in the proof of Theorem 1, it follows that
f(Bs x ®RM) (and so, a fortiori, f(N x R™)) contains an open neighbourhood of 0 € X.

Acknowledgment. The author is indebted to his colleague, J. F. Toland of the University
of Bath, for many helpful discussions.

REFERENCES

[1] J. P. AuBiNAND A. CELLINA, Differential Inclusions, Springer-Verlag, New York, 1984.
[2] R. W. BrockEetT, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory,
R. W. Brockett, R. S. Millman, & H. J. Sussmann, eds., Birkhéuser, Boston, 1983, pp. 181-191.
[3] A. CeLLINA AND A. LAsOTA, A new approach to the definition of topological degree for multivalued mappings,
Rend. Acc. Naz. Lincei, 47 (1969), pp. 434-440.
[4] E H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[5] J. M. Coron, Global asymptotic stabilization for controllable systems without drift, Math. Control Signals
Systems, 5 (1992), pp. 295-312.
[6] K. DEMLING, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
[71 A.F. Fwwerov, Differential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988.
[8] M. A. KrasNOSEL'sKII AND P. P. ZaBrEIko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin,
1984.
[91 W. V. PETRYSHYN AND P. M. FirzpaTrRICK, A degree theory, fixed point theorems, and mapping theorems for
multivalued noncompact mappings, Trans. Amer. Math. Soc., 194 (1974), pp. 1-25.
[10] E. P. Ryan, Discontinuous feedback and universal adaptive stabilization, in Control of Uncertain Systems,
D. Hinrichsen and B. Martensson, eds., Birkhduser, Boston, 1990, pp. 245-258.
[11] E. D. Sontac, Mathematical Control Theory, Springer-Verlag, New York, 1990.
[12] J. R. L. WEBB, On degree theory for multivalued mappings and applications, Bol. Un. Math. Ital., 9 (1974),
pp- 137-158.
[13] J. ZaBczyk, Some comments on stabilizability, Appl. Math. Optim., 19 (1989), pp. 1-9.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



